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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1063

COMPARISON OF MEASURED AND CALCULATED
STRESSES IN RUILT-UP BEAMS

By L. Ross Levin and David H. Nelson
SUMMARY .

Web stresses and flange stresses wers measured
In three built-up beams: one of consbtant-depth
with flanges of constant cross section, one linearly
tapered in depth with flanges of constant cross section,
and one linearly tapered in depth with tapered flanges.
The measured stresses were compared with the calculated
stresses obtained by the methods outlined 1in order to
determine the degree of accuracy that may be expected
from the stress-analysis formulas. These comparisons
indlcated that the average measured stresses for all
points in the central section of the beams did not exceed
the average calculated stresses by more than 5 percent.
It was also indicated that the difference between average
measured flange stresses and average calculated flange
stresses based on the net area and a fully effective web
did not exceed 6.1 percent.

INTRODUCTION

In an effort to improve the accuracy and consistency
of strength predictions of ailrcraft structures, an .
increasing tendency has besen evident 1n structural
engineering to supplement static tests wlth strain
readings. The advent. of the electrical strain gage has
accelerated this tendency. Because the aircraft struc-
ture is quite complicated and the location of the
failure in a well-designed structure cannot be easily
determined, even a relatively large number of gages
(several hundred) may be just sufficient to place a few
gages on each spot where failure is likely to occur.
The situation is further complicated because structures
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bullt up from sheet are not so uniform nor so consistent e
in thelr bseshavior gs, for example, beams of solid cross
section. The simple formulas for beams of solld cross
section consequently ere not applicable to buillt-up
structures. The sucgcegsful interpretation of strain
readings on airplane structures requires, therefore,
basic information on the consistency of the behavier of
built-up-  structures. This informstion may be obtained
by multigage tests of structural elements slmple enough
to permit very complete coversge. The test data thus
obtained may be compared with the results obtained by
stress-analysis formulas, such as those presented in
references 1, 2, and %, to determine the accuracy with
which these formulas may predict the strezs of bullt-
up structures.

The present paper glves basic data on the stresses
obtained for built-up heams and these measured stresses
are compeared with those predicted by stress-analysis
formalas. This information was obtasined from straln
measurements on three thin-web beams: one of constant-
depth with flanges of constant cross sectlon, one
linearly tapered in depth with flesnges of constant - —
cross section, and._ one linsarly tapered in depth-wlth
flanges of which the cross sectlon varied at the same
rate as the deovth of thé beam.

SYMBOLS : .
Ap cross-sectional area of flange (two angles) normal
to center line of besam, square inches
Ap effective cross-sectlonal area of flesnges normal
8 to center line of beam (flange area plus cne

sixth of web area), square inches

B Young's modulus of elasticity, ksl —
I3 vertical component of flange force ln beam tapered

in depth, kips . '
G shear modulus, ksi

roment of lnertis, inchesu

Ip moment of inertia of total effective Eross section
of beam about-neutral axlis, inches“
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Is moment of inertie of effectlve cross section
) flanges about neutral axis of beam,inchesu

L total length of beam, Inches

M bending moment, kip-inches

N ratio of area of two flanges to area of web (2Apy/ht)

P load on tip of beam, kips

2 momént, about neutral axis, of ares between extreme
fiter and fiber a distance y Irom neutral axis,
inches?

external shear force, kips

h effective depth of beam between centroids of flanges,
inches

t thickness of shear web, inches

X ‘distance from tip of beam, inches

y - distance of given fiber from neutral axis of beam,
inches . :

a taper angle, angle between center line of beam and
line definred by centrold of flange

€ tensile or compressive strain

o normel stress in flange at the angle a, ksi

Oav average normal stress in flange at angle a,
xsi

T shear stress in web at distance 7y, ksl

average shear stress in web at any station, ksi
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DISCUSSION OF THEORIES FO? BUILT-UP BEAMS
*eb Stresses
The shear stresses in the web of a beam of constant

~depth at any distance y from the neutral axls are
usuelly calculated by the standard formula

o
O

|

(1)

-1
ct

The average shear stresses in the web are usually
calculated by

T, = - S (2)

Formulas (1) and (2) are not applicable to besms
tapered 1n depth because the flangss carry some shear
force that should not be neglected. In reference 1
a method of cowmputing shear stresses in beams tapered in
depth is outlined. The method 1s besed on the squilil-
brium equation

h+dh 'h
2 : 2
M + 4d™ M
t dx = Mt add sy | M ]
Tyt dx T T ol vt -dy T vt dy {(3)
¥ ¥

This method is merely an extension of the "engineering!
method used in deriving formula (1).

The formula for shear stress at a distance y from
the neutral axis of a beam linesrly tapered in depth
wlth flanges of constant cross sectlon can be obtalined
by integrating equation (3) as
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[ﬁ:*% GL)} ¥ tan a[ﬁ+ip F @ (L*APH-J()]

ht

T=

where S8 &and M are positive in the directions indizated

on figure 1.

The formula for average shear stress in the web at
any station, derived by integrating formula. (L) from zero
to h/2 and dividing by h/2, is

P Ar,
T - S _ 2¥ tan a ya (5)
av.  ht B2t Ao 4 ht .
FTg

This formula is frequently used to calculate shear
stresses but is usually derived 1In a different way.

The total shear force in the web at any section is
usuelly assumed to be the total external shear at that .
section minus the vertical components of the flange
forces st the same section, and the web is assumed
capable of resisting bending. The vertical force in
each flange is then

_ .M tan a
h

H|k4
i)

(6)
T

where IF/IT i1s the ratio of the moment of inertia of

both flanges about the neutral axis of the beam to the .
total wmoment of inertia of the same section of the beam

about the neutral axis. If the moment of lnertia of the
flanges about thelr own centriid is negl@ctnd the
ratio Ip/Ip reduces to Eht end formula (6) becomes

s



6 NACA TN No. 1063

- M tan a AF

h ht
Y

F (6a)

Thls equation is the form in which the expression for the
vertical component of the flange force occurs in )
formula (5).

A formula for the shear stress at a distance y
from the neutral axlis of a beam linearly tavered .ln
depth with flanges of which the cross section varied at
the same rate as the deoth may also be derived from
equetion (3). The shear stress in this type of beam is

i s_[N_ + 5 -2@92} 2 ten a_‘[N +z - 6(%)2]

) ht (N + %) n2t (N + ;;L.)

where N 1is the ratio of the cross-sectional area of
both flanges, normal_to the neutral exls of the beam,
to the cross-sectional ares of the web at the same
section. The formula for the average shear streas

1s the same for all types of beams.

Tav

In reference 2 methods of calculating shear stresses
are presented that are based on the sawe equilibrium
equation as the methods in reference 1. The precedures,
however, are slightly different and in a particular cas=z
one wethod may have some advantages over the other. The
final result will be the same with elther method.

The  "enginesring" methods of references 1 and 2 are
aoplicable only to beams wlth small taper angles because
they do naot consider compatibillity of displacements
although they do ensure equilibriwn. These wethods
also assume that the bending stress is proportional to
the.dlstance from the neutral sxis of the beam and thils
assumption 1s not satisfactory for lerge taper angles.
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4 "classical" method of computing stresses in beams
tapered 1n depth is presented in reference 3. The
englneering methods and this classical method agree for
small taper angles, and the classical method is applicable
to large as well as to small taper angles. In veference 3
are presented solutions for linearly tapered beams with a
rectangular cross section, for a thin web with concen-
trated flanges of constant cross section, and for a thin
web with concentrated flahges with the cross section
varied st the same rate as the depth of the beam. These
solutions, however, are usually much more difficult than
the englineering solutions to the problem. The solution
for a thin web with concentrated flanges of constant
cross section is very laborious for small tapser angles.

- Flange Stresses
The axlal stresses in the flanges of a bullt-up

beam of constant depth are usually calculated by the
standard formula R

- ¥y
= = (8)

The average axial stresses in the flanges (the stresses
at the flange centroid) are usually calculated by

(e} = M . - _ - (9)
av hig _

The effective flange ares AF can have a maximum value

equal to the gross area of the flange plus one-sixth of
the web area. : In sowe cases 1t may be necessary to use
a smaller effective area to take into account the rivet
holes in the flange and the possible ineffectiveness of

the web in bending. e ft:%%===

Forrulas (8B) and (9) are also used to calculate the
stresses in the flanges of tapered beams; however, the
stresses obtained from these formulas will not be axial
stresses in the flanges. In order to obtain axial



8 NACA TN No. 1063

atresses, the stresses csalculuted by formulas (8) and (9)

should be multiplied by —I—. The formula for axial
cos—a

stresses at any distance y from the neutral axis 1s

then

y_f (10)

cog - a

and the formula for axial stress. at the centroid of the
flange is

! 1

hAF éosaa
e

o (11)

av ~

where the area of the flange Ap 1s weasured normel to
the center 1line of the. beam.

TESTS

. Specimens

Three stiffened bullt-up cantilever beams of 24,8-T7
aluminum alloy were built and tested. One was & constant=
depth beam with flanges of constant cross section, one
a beam linesrly tapered in depth with flanges of constant
cross section, and one a beam linesrly tapered in depth
with flanges having a cross section that varied at the
same rate as the depth of the beaem. The webs were
stiffened with angles placed back~to-back on opposite
sides of -the web. For simplicity of construction the web
was fastened to-the outside of the legs of the flange
angles rather than to the insids. Further details of the
construction and the actual dimenslons of the beams are
shown on figure 2.

Procedure

The root of. each beam was bolted into a steel
fixture and the-comoression flarige was supported against
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lateral motion at the tip and at the midpoint of the span
as shown in figure 3. A tip load was applied on the
lower side of the beam by a hydraulic jack resting on a
platform scale, which was accurate to 0.5 percent.
Strains were measured in most of the even numbered bays
on the longitudinal center line of the beam, and alsoc &t
distances equal to one-quarter and three- -eighths of the
effective depth on each side of the center line except
on the tapered bear with flanges of constant cross
section where measurements were taken only at the center
line and at a distance equal to one-quarter of the
effective depth on each side of the center line. At
each point, 2-inch Tuckerman optical stralin gages were
mounted in pairs on each side of the web at angles

of 5° and 135° with the longltudinal center line of

the beam. Figure 3 shows & few gages mounted at h5°

on the tapered beam with tapered flanges. -

Axial strains in the flanges were measured with
2-inch Tuckerman opticel strain gages mounted on the legs
of the angles attached to the web and on the outstanding
legs of the angles. Stralns wers not measured on both
sides of the attached legs of the flange angles because
the web covered one side.

The load was applied to each beam in three equal
increments. Tf &a stralight line through the polnts on the
load-straln plot for each gage did not pass through zero,
the curve was shifted to pass through_zeroiéhowever, if
this shift in strain wes more than 20 x 10 ¥, the
measurements at thls point were repeated. Any measure-
ments that did not satisfy these conditions after being
reveated and thoroughly checked were not used.

Strains measured by pairs of gages on opposite B
sides of the sheet were averaged and the average strains
for Li5° and .135° were used to compute the shear stresses
at 0° and 90° by

T = (% [E(LI_SO) - €(1550)] (12)

Tn all calculations E was assumed to be 10.6 X 10% ksi
and G was assumed to be L.O x 107 ksi.



10 NACA TN No. 1053

PESULTS AND DISCUSSION

¥eb Stresses

The Bhsar stress distribution over the depthh of the
three beams is shown in figures L, 5, and 6 for a tip
load of 9 kips on the constant-denth beam and 6 kips on
each of the tapered beams. The sheer stresses at—these
loads were slightly less than the calculsted buckling
stresses. The differences betwéen measured and calculated
shear stresses are shown as percent of ~the calculated
shesy stresses In figure 7 and a sumwary of these dif-
ferences for the central section of the beams is given
in table I.. The calculated shear stresses and
shown on these figures were calculated by formulas l?
and (2) for the constant-depth beam, by formulas (h)
and (5) for the tapered beam with constant-flange area,
and by formulas (5) and (7) for the tsapered beam with
tavered flanges. - : )

central sectlion.- From a brief study of figures L,
5, and 6 1t 1s aoparent that at distsnces greater than
one-half the roct depth from elither end of the bLeams
(bays 5 to 16) the measured shear stresses in the web
were slightly greater on the cowmpression side of each
beam than on the tenslon side on the constant-denth
beam the Individual mesasured shear stresgses on the tenslon
side of the beam were freguently less then the calculated
stresses, but the measured stresses on the compression
side were usually greater than the calculated stresses.
nn- the other beams the individual measured stresses were
almost always grester than the calculated shear sliresses.

Table I shows that the aversge mesassured stress for
all points ‘in the central section of any of the three
beams did not exceed the average of the calculated
values of Tgy Dby more than 5.5 percent and did not

exceed the average of the calculated values of T Dby
more than l'.7 percent. The individual measured stresses
varied from:5.6b:percent less than 7T to 23%3.3 percent
more than T. In the central séction of all three beams,
however, there were only two points where the measured
stresses exceeded T by more than 15 percent. These
points were in bay 16, sabout one-hglf the root depth
away'from the root of the beam.



NACA TN No. 1063 11

Further study of figure 7 shows that the maximum
dilferenbes between the calculated T and the calcu-
lated at any point on the constant-deoth beam were

PDPGOl&%Xe (about 7 percent) but on the tapered beam
the maximur differences betweer the calculated values

of T and T, were smeller (about 1.5 percent). Wear
the root, where the proportions of the beams were very
nsarly the sere, the calculated shear-stress variation
over tihe Cepth of the tapered beams was much less than
that over the depth of the constant-depth beam. It
would be possible, however, to have tapered beams of
which the nrovortions were such that the differences
betveen the calculated values of T and 7T,, would

be much greater than in the present besms.-

Foot section.~ It is obvious from & study of fig-

ures i, 5, and 6 that for bay 18 in all beams tested,
stresses calculated by the proper eguations for T
or Tgy on the basis of the assumption that the flange

force -acted slong the centroid were not satisfactory.

The outstanding legs of the flanpes were cut off
approximately 2 inches nearer the root than the center
line of bay 16 and a steel plate was attached to one
side of the flange angles from bay 17 to the root to
reinforce thils section. The bolts that attached the e
flanges to the root flxture were between the csenter
line:of the flaznge and the original locatlion of the
flange centroid. It was assumed, therefore, that the
flange. forse acted along a2 line extendling from ths
intersesction of the original flange centrold with the
center line of bay-1lE to the center of the root attach-
ment bolts. This - assumption gave & taper angle of [;°
instead of 7°12' and 7°L1' on the tepered beams and of

-4 instead of O° on the ccnstant-depth beam., In bay 10
the calculated shear stresses based on this assum“tion_
were more setlsfactory than the calculated shear stressss
based on the .assumntion that the flange force acted along
the orizinal centroid of the flange (figs. L, 5, 6, and 7).
The maximum measured stress in bey 18 of the tapered

beams is about 1 to' 2 percent greater than the shear
stresses calculated on the basis of a change in the taper
angle st that section, but the meesured shear stresses —
in bay 18 of the constasnt-depth beam fall about half way _
between the two calculated curves. . e
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Tip section.- If a colurn has a load applled only
at one end and a shear web attached to it along one side,
the maximum disvlacement occurs at the loaded end. The
shear strein and shear stress in the web attached to it,
therefore, are highest at the loaded snd of the column.
This condition is the one that occurred at the end uprights
of the beams tested for the present investigation. Flg-
ures h, 5, and 6 show that the shear stresses in bay 2

were highest at the loaded end pof the upright. The maximum

measured stress was never more than 1 percent greater
than the maximum calculated stress., The.distridsution of
shear stresses in the web near the loaded-end upright is
probably one of the important factors affecting the
strength of the losded-end upripght.

Flange Stresses

The distribution of measured end calculated axial
flange stresses for the three beams tested are shown on
figures €, 9, and 10. Stresses were calculated by
formulas (8) and (G) for the constant~depth beam and by
formulas (1C) and (11) for the tapered beams. These
stresses were calculated for & fully effective web for
beth the net asrea snd the gross area. In order to obtain
an average velue of weasured stress at eazh section, =
straight lline-was drawn through the test points and the
stress at the intersection of this line with the centroid
of the flange was' taken as the average measured stress
in the flenpe. Table I gives the average difference
between the measured and calculated stresses at the
centroid and the range of variation between measured and
calculsated stresses in the extreme fiber for all noints
in tha central section of esach peam.

Central section.- At & few sections in the constant-

depth beam the measured axial flange stresses were nearly
constant over the depth of the flange, but at other
sections of this beam snd in the tapered beams the
stresses were not constant over the depth of ths flangze.
Filgure 10 shows that the measured stresses in the tapered
beam wlth tavered flanges averaged less than the calcu-
lated stresses for the net area and & fully effective
web, but the gverage weasured stresses in the other

beams (figs. 8 and 9) appear to have been slightly greater
than the calculated stresses lor .the net—area and a fully
effective web., The average difference between measured
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“lenge stresses and calculated flanze stresses did not

exceed 6.1 percent when the calculations were based on

the net aree snd a fully effective web (table I). The

me asured stresses in the extreme fiter varisd from -
8.3 nercent less then the calculated éxtreme fiber :
stresses to 8.8 sercent mors than the calculared extreme
7iter stresses.

™Mpures 8, 9, and 10 show also the average calcu-
lsted stresses based on the gross area and a fully
effective web. Tor all sectrons on the constant-depth
beem anc¢ the tapered beaw with flarges of constant
2ross section, the calculated stresses Yased on the
gross area were about 5 percent less than those based
on the net area. In the tapered beam with tapered o
flenzes the stresses based on the gross area wers L
from 5 to 9 percent less than those based on the net .
area. On the’ compress*or flange nf the. constant-depth
beam, calculated stresses based on the assumption that
the web was effe~stive only on the tension side of the
bean would have been asbout 10 percent grester than the
calculated stresses based on the assumnt;on that the web
was fully effective; on the tension flange the difference
would have been only 1 percent. L

Root end tin ssctions.- The messured flange stresses
in bays 2 snd i of tlhe tepered beams variled from less
than one-kalf the celculeted flange stresses to more
then two tires the calculated flange stresses (figs. 9
and 10), The measured stress at one point in bay 5 of
the constant-depth beam was about 25 percent grenter
then the.calculsted stress. These learge variations,
however, sre of little vractical importance because
the stresses at these sections were swall as compared
with those at other points in the besm. 'In bay 1 of
both tapered beams the variation of measured stresses
across the depth of the flangze was much greater then

in the centrsal section of the beam. - The measured T

extreme~-fiber stresses were from 15 to 30 percent
greater than the calculated stresses. It 1ls very
difficult to calcalate flanre stresses near the root
of any beam because these stresses depend to a large
extent upon the details pf the connections.
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CONCLUSIONS

Three thin-wsb built-up beams, one of constant devth
wlth flanges of constant cross sectlon, one with slight
linear teper in depth with flenges of constant cross

section, and one with slight linear taner in depth with _

flanges of whichk the cross section varied at the same
rate as the deoth of the bsam wers tested at such losds
that the web shear stresses were slightly less than the

calculated buckling stresses. (omparlsons of measured

shear stresses with calculated shear stresses indicated
that the average measured shear stresses for all points
in the centrsasl sectlon of tha beam dld not sxceed the
average calculated shear stresses by more than about ]
5 percent. The individual measured shear stresses varied
from about 6 percent less than the calculated shear
stresses to about 23 percent wmore than the calculated
shear stresses, but thers were ocnly two points in all
three becms where the meazasured stresses exceeded the
calculated stresses by more than 15 percent. These
points were at a sitatlon about one-helf the root denth
away from the root of the beam.

Comparlson of measured flange stresses with calcu-
lated flange stresses based on the net area and & fully
effective web showed that the difference between averaze
me asured stress and aversge ca&lculated stress in the
central section of any of ths beams 4id nont exceed
6.1 percent. The individual measured stresses in the
extreme fiber varied from about & percent lsss than
calculated t~ about 2 vercent more than calculated.

Lengley Memorial Aeronautical Laboratory
Natlonal Advisory Committee for deronautlcs
Langley %ield, Va,, Januaery 21, 1946
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TABLE T

COV¥PARTSON OF YFASURED YITH CALCULATED STEESSES TN THE

[%ercentages are obteined by the formula

CEFTFAL SECTION OF THE BHAXS

measured - Caleculated:

Calculsated

x lOéﬂ

Soecimen

Dlfference from Tgy

Bifference from T

Difference frow o

(a)

Averags at

Variation at

Average |Verietion| Average |Variation trold N b
{vercent) | (percent) |{percent)| (vercent) ?;grzgnt) ex(;:?Eeii)er
Constant-depth -G, -5.6 -8.3
besm 2.3 {15. 5.6 {25;3 3.5 {7.5
Tapered beam . -l.3 -1.
constant AF 943 h'T. {;3.5 b {iB.g
Tapsered beam, _ ~
tapered L.g { h.7 { ‘2 -6.1 {7'9
Flonae 21, g 19.5 | 7.2

L

.acalculated atresses based on the net area and & fully effective web.

NATTONAL, ADVIEOHY
COMMITTEZ T'CR AERONAUTICS

9T

90T *oN NI VOV
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Figure 6.- Measured and cdlculated shear-stress distribution |
in the tapered beam with tapered flanges. P-6kips.
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Flgure 7.- Differences ‘between measured ond coculated shear stresses.
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anure& Distribution of measured and cabuated axial flange stress in the
constant-depth beam. P=3kips.
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Figure 9.- Distribution of measured and cakculated axial flange stress in the
tapered beam with flanges of constant cross section. P-~6 kips.
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Figure 10.- Distribution of measured and colculated axiad flonge stress In the.
Tapered beam with tapered flanges. P=6 kips.
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